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correlation coefficient, e, of 0.999, indicating an almost nor- 
mal distribution of the weighted residuals. The corresponding 
values before the last least-squares refinement were 0.904 and 

Table 2. Analysis of (wIAFI 2) as a function of (sin 0)/2 

Number of 
Interval reflexions (IAFI 2 ) (wldFl 2) 
0"3084 110 3.093 1" 106 
0"3861 110 0"667 1"131 
0.4418 110 0"520 0"878 
0"4885 110 0.488 0"807 
0-5302 110 0"706 1-103 
0-5665 110 0"580 0"823 
0"6049 110 0"932 1"116 
0"6491 112 1"015 1"036 

0-999 respectively. The averages of wIAFI 2 analysed with 
respect to F and (sin 0)/2 are shown in Tables 1 and 2 respec- 
tively. The values in the tables are scaled such that the total 
average is unity and refer to the second determination of the 
weight function. 

Fig. 1 shows the correlation coefficient as a function of the 
weight index S for a fixed set AF. The different values of S and 
Q are obtained by varying the parameters in the weight func- 
tion. The correlation coefficient, Q, tends to 1 with decreasing 
value of S, in which case the wl/2AF are drawn from a normal 
distribution, and the least-squares method and the maximum- 
likelihood method become equivalent (Kendall, 1946). Al- 
though, as a general feature, this remains to be proved, the 
present method, as demonstrated by the example, is never- 
theless, together with a normal probability plot, a useful tool 
in the evaluation of crystal structure data. 
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Fig. 1. Plot of the correlation coefficient, e, v e r s u s  weight index, S. 
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Fast algorithms for 'inverting' singular matrices by modified Cholesky procedures produce a non-unique A'2 generalized 
reciprocal matrix rather than the generalized inverse A +. 

Some crystallographic applications of generalized inverse 
matrices have been described (Mackay, 1977) and further 
food for thought may be gleaned from standard texts 
(Pringle & Rayner, 1971, Boullion & Odell, 1971). In addi- 
tion to these applications the use of generalized inverse 
matrices is currently undergoing something of a renaissance 
in a related area of physical science, namely empirical 
valence-force-field or molecular-mechanics calculations of 
crystal (Warshel & Lifson, 1970) and molecular structure 
(White, 1977). Unfortunately, the search for efficient al- 
gorithms to generate generalized inverses has precipitated 
several difficulties which have been discussed by Ermer 
(1975) although no explanation was offered. These problems 
have an almost exact parallel in the refinement of structure 
factors by the methods described in Mackay's paper and 
we offer the following clarification. 

Some definitions are required because the nomenclature 
of generalized inverses is something of a semantic minefield. 
For any matrix P, square or rectangular, there exists a unique 
matrix Q satisfying the conditions 

PQP = P (1) 

Q P Q = Q  (2) 

(PQ)*  = PQ (3) 

(QP)*  = Q P .  (4) 

Furthermore, (a) a one-condition, generalized reciprocal 
matrix of P is a matrix Q=p,1  satisfying (1); (b) a two- 
condition, generalized reciprocal matrix of P is a matrix 
Q = P  r2 satisfying (1) and (2); (c) a left-weak, generalized 
reciprocal matrix of P is a matrix Qm-pr3 satisfying (1), (2) 
and (3); (d) a right-weak, generalized reciprocal matrix of 
P is a matrix Q=p '3 '  satisfying (1), (2) and (4); (e) the gen- 
eralized inverse matrix of P is a matrix Q--P + satisfying 
(1)-(4). 

The following inclusion relations are true 

p+ ___ pr3 ___ p'2 ___ p ' l  

p + ~ p,3' ~ p'2 
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with equality holding throughout if and only if P is non- 
singular. It is also possible to express p'2, p,3, pr3' and P+ 
in terms of one-condition generalized reciprocals (p~l, 
p~l ... p,~t ): 

o r  

p'2 = p'~, pp~l (5) 

pr3 = ( p * p ) ' l p *  (6) 

p'3' = p * (pp * ) " l  (7) 

P + = P*(PP*)" t  P(P* P)"~ P* (8) 

P + = Pr3'PP r3 . (9) 

Consider now the solution of a system of linear equations 

Ax = b (10) 

where A is a symmetric matrix. For molecular-mechanics 
calculations 

?2V OV 
A = ?~pi?~p---~j and b = -  

dP~ 
where V is the potential energy and Pi are the atomic co- 
ordinates etc. The corresponding formulation for crystallo- 
graphic least squares would be 

alF~l alf~l OIF~I 
A = Y w and b = 3-" wd - - .  

0pi ~p~ 

The general solutions of (10) for the vector, x, of corrections 
to the p~ is 

x =A+b 

and two procedures have been described for 'inverting' A 
(which is singular in the general case). (i) Construction of 
A ÷ from the eigenvalues (2) and eigenvectors (E) of A so 
that 

A + = E diag(1/JOE* 

which is analogous to Mackay's use of FO1BHF for rect- 
angular matrices. 

(ii) Rao's (1955) method which is a modification of the 
Cholesky inversion procedure for symmetric, positive de- 

finite matrices. The procedures described by Ermer (1975) 
and Altona & Faber (1974) and the practice of, for instance, 
fixing the arbitrary y parameter during crystallographic 
least-squares refinement in the space group P21 are simply 
inelegant implementations of Rao's method. 

Ermer has found that method (ii) is eight times faster than 
method (i) (see also the timings for FO1BHF and FO1ADF 
in the Nottingham Algorithms Group NAG library manual) 
resulting in an overall reduction of run time by a factor of 
three for a complete energy-minimization calculation. 
Although Rao's method does not give A ÷, its speed of execu- 
tion provides a powerful incentive to its use. The fact that 
Rao's method gives a non-unique A'2 generalized reciprocal 
does not appear to be widely known. This explains Ermer's 
residual difficulties, namely that the results of his energy- 
minimization calculations varied slightly depending on how 
the molecule was placed in the coordinate frame (in general, 
Ermer was able to circumvent the convergence difficulties 
mentioned by Mackay). Although these variations are real 
they are small and, as far as energy-minimization calcula- 
tions go, can be ignored in practice. Whether this is true for 
crystallographic least-squares calculations remains to be seen 
(Mackay, 1977). 
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